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6S.1
Derivation of the Convection Transfer
Equations

In Chapter 2 we considered a stationary substance in which heat is transferred by
conduction and developed means for determining the temperature distribution
within the substance. We did so by applying conservation of energy to a differential
control volume (Figure 2.11) and deriving a differential equation that was termed
the heat equation. For a prescribed geometry and boundary conditions, the equation
may be solved to determine the corresponding temperature distribution.

If the substance is not stationary, conditions become more complex. For exam-
ple, if conservation of energy is applied to a differential control volume in a moving
fluid, the effects of fluid motion (advection) on energy transfer across the surfaces
of the control volume must be considered, along with those of conduction. The
resulting differential equation, which provides the basis for predicting the tempera-
ture distribution, now requires knowledge of the velocity field. This field must, in
turn, be determined by solving additional differential equations derived by applying
conservation of mass and Newton’s second law of motion to a differential control
volume.

In this supplemental material we consider conditions involving flow of a vis-
cous fluid in which there is concurrent heat and mass transfer. Our objective is to
develop differential equations that may be used to predict velocity, temperature, and
species concentration fields within the fluid, and we do so by applying Newton’s
second law of motion and conservation of mass, energy, and species to a differential
control volume. To simplify this development, we restrict our attention to steady,
two-dimensional flow in the x and y directions of a Cartesian coordinate system. A
unit depth may therefore be assigned to the z direction, thereby providing a differ-
ential control volume of extent ( ).

6S.1.1 Conservation of Mass

One conservation law that is pertinent to the flow of a viscous fluid is that matter
may neither be created nor destroyed. Stated in the context of the differential con-
trol volume of Figure 6S.1, this law requires that, for steady flow, the net rate at
which mass enters the control volume (inflow � outflow) must equal zero. Mass
enters and leaves the control volume exclusively through gross fluid motion. Trans-
port due to such motion is often referred to as advection. If one corner of the control
volume is located at (x, y), the rate at which mass enters the control volume through
the surface perpendicular to x may be expressed as , where is the total mass
density ( ) and u is the x component of the mass average velocity. The
control volume is of unit depth in the z direction. Since and u may vary with x, the�

� � �A � �B
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W-22 6S.1 � Derivation of the Convection Transfer Equations

rate at which mass leaves the surface at x + dx may be expressed by a Taylor series
expansion of the form

Using a similar result for the y direction, the conservation of mass requirement
becomes

Canceling terms and dividing by dx dy, we obtain

(6S.1)

Equation 6S.1, the continuity equation, is a general expression of the overall
mass conservation requirement, and it must be satisfied at every point in the fluid.
The equation applies for a single species fluid, as well as for mixtures in which
species diffusion and chemical reactions may be occurring. If the fluid is incom-
pressible, the density is a constant, and the continuity equation reduces to 

(6S.2)

6S.1.2 Newton’s Second Law of Motion

The second fundamental law that is pertinent to the flow of a viscous fluid is Newton’s
second law of motion. For a differential control volume in the fluid, this requirement
states that the sum of all forces acting on the control volume must equal the net rate at
which momentum leaves the control volume (outflow � inflow).

Two kinds of forces may act on the fluid: body forces, which are proportional
to the volume, and surface forces, which are proportional to area. Gravitational, cen-
trifugal, magnetic, and/or electric fields may contribute to the total body force, and we
designate the x and y components of this force per unit volume of fluid as X and Y,
respectively. The surface forces Fs are due to the fluid static pressure as well as to
viscous stresses. At any point in the fluid, the viscous stress (a force per unit area)
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Differential control volume
(dx � dy � 1) for mass
conservation in two-dimensional
flow of a viscous fluid.
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6S.1 � Derivation of the Convection Transfer Equations W-23

may be resolved into two perpendicular components, which include a normal stress
and a shear stress (Figure 6S.2).

A double subscript notation is used to specify the stress components. The first
subscript indicates the surface orientation by providing the direction of its outward
normal, and the second subscript indicates the direction of the force component.
Accordingly, for the x surface of Figure 6S.2, the normal stress corresponds to a
force component normal to the surface, and the shear stress corresponds to a
force in the y direction along the surface. All the stress components shown are posi-
tive in the sense that both the surface normal and the force component are in the
same direction. That is, they are both in either the positive coordinate direction or
the negative coordinate direction. By this convention the normal viscous stresses
are tensile stresses. In contrast the static pressure originates from an external force
acting on the fluid in the control volume and is therefore a compressive stress.

Several features of the viscous stress should be noted. The associated force is
between adjoining fluid elements and is a natural consequence of the fluid motion
and viscosity. The surface forces of Figure 6S.2 are therefore presumed to act on the
fluid within the control volume and are attributed to its interaction with the sur-
rounding fluid. These stresses would vanish if the fluid velocity, or the velocity gra-
dient, went to zero. In this respect the normal viscous stresses ( and ) must not
be confused with the static pressure, which does not vanish for zero velocity.

Each of the stresses may change continuously in each of the coordinate direc-
tions. Using a Taylor series expansion for the stresses, the net surface force for each
of the two directions may be expressed as

(6S.3)

(6S.4)

To use Newton’s second law, the fluid momentum fluxes for the control vol-
ume must also be evaluated. If we focus on the x-direction, the relevant fluxes are as
shown in Figure 6S.3. A contribution to the total x-momentum flux is made by the
mass flow in each of the two directions. For example, the mass flux through the x
surface (in the y-z plane) is ( ), the corresponding x-momentum flux is . Sim-
ilarly, the x-momentum flux due to mass flow through the y surface (in the x-z
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FIGURE 6S.2
Normal and shear viscous
stresses for a differential control
volume (dx � dy � 1) in two-
dimensional flow of a viscous
fluid.
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W-24 6S.1 � Derivation of the Convection Transfer Equations

plane) is . These fluxes may change in each of the coordinate directions, and
the net rate at which x momentum leaves the control volume is

Equating the rate of change in the x momentum of the fluid to the sum of the
forces in the x direction, we then obtain

(6S.5)

This expression may be put in a more convenient form by expanding the derivatives
on the left-hand side and substituting from the continuity equation, Equation 6S.1,
giving 

(6S.6)

A similar expression may be obtained for the y direction and is of the form 

(6S.7)

We should not lose sight of the physics represented by Equations 6S.6 and
6S.7. The two terms on the left-hand side of each equation represent the net rate of
momentum flow from the control volume. The terms on the right-hand side account
for the net viscous and pressure forces, as well as the body force. These equations
must be satisfied at each point in the fluid, and with Equation 6S.1 they may be
solved for the velocity field.

Before a solution to the foregoing equations can be obtained, it is necessary to
relate the viscous stresses to other flow variables. These stresses are associated with
the deformation of the fluid and are a function of the fluid viscosity and velocity gra-
dients. From Figure 6S.4 it is evident that a normal stress must produce a linear
deformation of the fluid, whereas a shear stress produces an angular deformation.
Moreover, the magnitude of a stress is proportional to the rate at which the deforma-
tion occurs. The deformation rate is, in turn, related to the fluid viscosity and to the
velocity gradients in the flow. For a Newtonian fluid1 the stresses are proportional to
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FIGURE 6S.3
Momentum fluxes for a differential control volume (dx � dy � 1)
in two-dimensional flow of a viscous fluid.

1A Newtonian fluid is one for which the shear stress is linearly proportional to the rate of angular
deformation. All fluids of interest in the text are Newtonian.
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6S.1 � Derivation of the Convection Transfer Equations W-25

the velocity gradients, where the proportionality constant is the fluid viscosity.
Because of its complexity, however, development of the specific relations is left to
the literature [1], and we limit ourselves to a presentation of the results. In particular,
it has been shown that

(6S.8)

(6S.9)

(6S.10)

Substituting Equations 6S.8 through 6S.10 into Equations 6S.6 and 6S.7, the 
x- and y-momentum equations become

(6S.11)

(6S.12)

Equations 6S.1, 6S.11, and 6S.12 provide a complete representation of conditions in
a two-dimensional viscous flow, and the corresponding velocity field may be deter-
mined by solving the equations. Once the velocity field is known, it is a simple mat-
ter to obtain the wall shear stress from Equation 6.2.

Equations 6S.11 and 6S.12 may be simplified for an incompressible fluid of
constant viscosity. Rearranging the right-hand side of each expression and substitut-
ing from Equation 6S.2, the x- and y-momentum equations become

(6S.13)��u 

�u
�x

 � v 

�u
�y� � � 

�p
�x

 � ���2u
�x2

 � 

�2u
�y2� � X

�s

 � 

�
�x

 ����u
�y

 � 

�v
�x�� � Y

 � �u 

�v
�x

 � v 

�v
�y� � � 

�p
�y

 � 

�
�y

 �� �2�v
�y

 � 

2
3

 ��u
�x

 � 

�v
�y���

 � 

�
�y

 �� ��u
�y

 � 

�v
�x�� � X

 � �u 

�u
�x

 � v 

�u
�y� � � 

�p
�x

 � 

�
�x

 �� �2 

�u
�x

 � 

2
3

 ��u
�x

 � 

�v
�y���

 �xy � �yx � � ��u
�y

 � 

�v
�x�

 �yy � 2�
�v
�y

 � 

2
3

� ��u
�x

 � 

�v
�y�

 �xx � 2�
�u
�x

 � 

2
3

� ��u
�x

 � 

�v
�y�

σxx σxx

τyx

τxy

τyx

τxy

(a) (b)

FIGURE 6S.4
Deformations of a fluid element due to viscous stresses.
(a) Linear deformation due to a normal stress. (b) Angular
deformation due to shear stresses.
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W-26 6S.1 � Derivation of the Convection Transfer Equations

(6S.14)

6S.1.3 Conservation of Energy

To apply the energy conservation requirement (Equation 1.11c) to a differential
control volume in a viscous fluid with heat transfer (Figure 6S.5), it is necessary to
first delineate the relevant physical processes. If potential energy effects are treated
as work done by the body forces, the energy per unit mass of the fluid includes the
thermal internal energy e and the kinetic energy V2/2, where . Accord-
ingly, thermal and kinetic energy are advected with the bulk fluid motion across the
control surfaces, and for the x-direction, the net rate at which this energy enters the
control volume is 

(6S.15)

Energy is also transferred across the control surface by molecular processes. There
may be two contributions: that due to conduction and energy transfer due to the dif-
fusion of species A and B. However, it is only in chemically reacting flows that
species diffusion strongly influences thermal conditions. Hence the effect is
neglected in this development. For the conduction process, the net transfer of
energy into the control volume is 

(6S.16)

Energy may also be transferred to and from the fluid in the control volume by
work interactions involving the body and surface forces. The net rate at which work
is done on the fluid by forces in the x-direction may be expressed as 
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FIGURE 6S.5
Differential control volume
(dx � dy � 1) for energy
conservation in two-dimensional
flow of a viscous fluid with heat
transfer.
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(6S.17)

The first term on the right-hand side of Equation 6S.17 represents the work done by
the body force, and the remaining terms account for the net work done by the pres-
sure and viscous forces.

Using Equations 6S.15 through 6S.17, as well as analogous equations for the 
y-direction, the energy conservation requirement (Equation 1.11c) may be ex-
pressed as

(6S.18)

where is the rate at which thermal energy is generated per unit volume. This
expression provides a general form of the energy conservation requirement for flow
of a viscous fluid with heat transfer.

Because Equation 6S.18 represents conservation of kinetic and thermal internal
energy, it is rarely used in solving heat transfer problems. Instead, a more convenient
form, which is termed the thermal energy equation, is obtained by multiplying Equa-
tions 6S.6 and 6S.7 by u and v, respectively, and subtracting the results from Equation
6S.18. After considerable manipulation, it follows that [2]

(6S.19)

where the term represents a reversible conversion between
mechanical work and thermal energy, and , the viscous dissipation, is defined as

(6S.20)

The first term on the right-hand side of Equation 6S.20 originates from the viscous
shear stresses, and the remaining terms arise from the viscous normal stresses. Col-
lectively, the terms account for the rate at which mechanical work is irreversibly
converted to thermal energy due to viscous effects in the fluid.

If the fluid is incompressible, Equations 6S.19 and 6S.20 may be simplified by
substituting Equation 6S.2. Moreover, with and for an incom-
pressible fluid, the thermal energy equation may then be expressed as 

(6S.21)
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Ẇnet,x � (Xu) dx dy � 

�
�x

 [(�xx � p) u] dx dy � 

�
�y

 (�yxu) dx dy

c06_supl.qxd  1/24/06  5:35 PM  Page W-27



W-28 6S.1 � Derivation of the Convection Transfer Equations

The thermal energy equation may also be cast in terms of the fluid enthalpy i,
instead of its internal energy e. Introducing the definition of the enthalpy, 

(6S.23)

and using Equation 6S.1 to replace the third term on the right-hand side of
Equation 6S.19 by spatial derivatives of p and , the energy equation may be
expressed as [2]

(6S.24)

If the fluid may be approximated as a perfect gas, di = cpdT, Equation 6S.24
becomes

(6S.25)

6S.1.4
Conservation of Species

If the viscous fluid consists of a binary mixture in which there are species concen-
tration gradients (Figure 6.9), there will be relative transport of the species, and
species conservation must be satisfied at each point in the fluid. The pertinent form
of the conservation equation may be obtained by identifying the processes that
affect the transport and generation of species A for a differential control volume in
the fluid.

Consider the control volume of Figure 6S.6. Species A may be transported by
advection (with the mean velocity of the mixture) and by diffusion (relative to the
mean motion) in each of the coordinate directions. The concentration may also be
affected by chemical reactions, and we designate the rate at which the mass of
species A is generated per unit volume due to such reactions as .

The net rate at which species A enters the control volume due to advection in
the x-direction is 
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FIGURE 6S.6
Differential control volume (dx � dy � 1) for
species conservation in two-dimensional flow
of a viscous fluid with mass transfer.
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(6S.26)

Similarly, multiplying both sides of Fick’s law (Equation 6.6) by the molecular
weight �A (kg/kmol) of species A to evaluate the diffusion flux, the net rate at
which species A enters the control volume due to diffusion in the x-direction is 

(6S.27)

Expressions similar to Equations 6S.26 and 6S.27 may be formulated for the
y-direction.

Referring to Figure 6S.6, the species conservation requirement is 

(6S.28)

Substituting from Equations 6S.26 and 6S.27, as well as from similar forms for the
y-direction, it follows that

(6S.29)

A more useful form of this equation may be obtained by expanding the terms
on the left-hand side and substituting from the overall continuity equation for an
incompressible fluid. Equation 6S.29 then reduces to 

(6S.30)

or in molar form

(6S.31)

EXAMPLE 6S.1

One of the few situations for which exact solutions to the convection transfer equa-
tions may be obtained involves what is termed parallel flow. In this case fluid
motion is only in one direction. Consider a special case of parallel flow involving
stationary and moving plates of infinite extent separated by a distance L, with the
intervening space filled by an incompressible fluid. This situation is referred to as
Couette flow and occurs, for example, in a journal bearing.

1. What is the appropriate form of the continuity equation (Equation D.1)?

2. Beginning with the momentum equation (Equation D.2), determine the velocity
distribution between the plates.
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W-30 6S.1 � Derivation of the Convection Transfer Equations

3. Beginning with the energy equation (Equation D.4), determine the temperature
distribution between the plates.

4. Consider conditions for which the fluid is engine oil with L � 3 mm. The speed
of the moving plate is U � 10 m/s, and the temperatures of the stationary and
moving plates are T0 � 10°C and TL � 30°C, respectively. Calculate the heat
flux to each of the plates and determine the maximum temperature in the oil.

SOLUTION

Known: Couette flow with heat transfer.

Find:
1. Form of the continuity equation.

2. Velocity distribution.

3. Temperature distribution.

4. Surface heat fluxes and maximum temperature for prescribed conditions.

Schematic:

Assumptions:
1. Steady-state conditions.

2. Two-dimensional flow (no variations in z).

3. Incompressible fluid with constant properties.

4. No body forces.

5. No internal energy generation.

Properties: Table A.8, engine oil (20°C): � � 888.2 kg/m3, k � 0.145 W/m � K,
� � 900 � 10�6 m2/s, � � �� � 0.799 N � s/m2.

Analysis:
1. For an incompressible fluid (constant �) and parallel flow (v � 0),

Equation D.1 reduces to

�

The important implication of this result is that, although depending on y, the x
velocity component u is independent of x. It may then be said that the velocity
field is fully developed.

2. For two-dimensional, steady-state conditions with v � 0, , and X �
0, Equation D.2 reduces to
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However, in Couette flow, motion of the fluid is not sustained by the pressure
gradient, , but by an external force that provides for motion of the top
plate relative to the bottom plate. Hence ( ) � 0. Accordingly, the
x-momentum equation reduces to

The desired velocity distribution may be obtained by solving this equation.
Integrating twice, we obtain

where C1 and C2 are the constants of integration. Applying the boundary condi-
tions

it follows that C2 � 0 and C1 � U/L. The velocity distribution is then

�

3. The energy equation (D.4) may be simplified for the prescribed conditions. In
particular, with v � 0, ( ) � 0, and , it follows that

However, because the top and bottom plates are at uniform temperatures, the
temperature field must also be fully developed, in which case ( ) � 0. The
appropriate form of the energy equation is then

The desired temperature distribution may be obtained by solving this equation.
Rearranging and substituting for the velocity distribution,

Integrating twice, we obtain

The constants of integration may be obtained from the boundary conditions

in which case

and

�T(y) � T0 � 

�

2k
 U2�y

L
 � �y

L�
2� � (TL � T0) 

y
L

C4 � T0   and   C3 � 

TL � T0

L
 � 

�

2k
 

U 2

L

T(0) � T0    T(L) � TL

T(y) � �
�

2k
 �U

L�
2

y2
 � C3y � C4

k 

d2T
dy2

 � � ��du
dy�

2

 � � ��U
L�

2

0 � k 

�2T
�y2

 � ���u
�y�

2

�T/�x

�cpu 

�T
�x

 � k �
2T

�x2
 � k �

2T
�y2

����u
�y�
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q̇ � 0�u/�x

u(y) � 

y
L

 U

u(0) � 0  u(L) � U

u(y) � C1y � C2

�2u
�y2

 � 0

�p/�x
�p/�x
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4. Knowing the temperature distribution, the surface heat fluxes may be obtained
by applying Fourier’s law. Hence

At the bottom and top surfaces, respectively, it follows that

Hence, for the prescribed numerical values,

�

�

The location of the maximum temperature in the oil may be found from the
requirement that

Solving for y, it follows that

or for the prescribed conditions

Substituting the value of ymax into the expression for T(y),

�

Comments:
1. Given the strong effect of viscous dissipation for the prescribed conditions, the

maximum temperature occurs in the oil and there is heat transfer to the hot, as
well as to the cold, plate. The temperature distribution is a function of the velocity
of the moving plate, and the effect is shown schematically below.

L

T(y)

y

T0 TL

U = 0
U1

U2

Tmax � 89.2�C

ymax � � 0.145 W/m � K
0.799 N � s/m2

 � 100 m2/s2
 (30 � 10)�C � 

1
2� L �0.536L

ymax � � k
�U 2

(TL � T0) � 

1
2�L

dT
dy

 � 

�

2k
 U 2�1

L
 � 

2y

L2� � 

TL � T0

L
 � 0

 qL� � �13,315 W/m2
 � 967 W/m2

 � 12.3 kW/m2

 q0� � �13,315 W/m2
 � 967 W/m2

 � �14.3 kW/m2

 q0� ��
0.799 N � s/m2

 � 100 m2/s2

2 � 3 � 10�3m
 � 

0.145 W/m � K
3 � 10�3m

 (30 � 10)�C

q0� � �
�U 2

2L
 � 

k
L

 (TL � T0)   and   qL� � � 

�U 2

2L
 � 

k
L

 (TL � T0)

qy� � � k 

dT
dy

 � � k��

2k
 U 2

 �1
L

 � 

2y

L2� � 

TL � T0

L �
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� Problems W-33

For velocities less than U1 the maximum temperature corresponds to that of the
hot plate. For U � 0 there is no viscous dissipation, and the temperature distri-
bution is linear.

2. Recognize that the properties were evaluated at � (TL � T0)/2 � 20°C,
which is not a good measure of the average oil temperature. For more precise
calculations, the properties should be evaluated at a more appropriate value of
the average temperature (e.g., � 55°C), and the calculations should be
repeated.

References

T

T

Problems

1. Schlichting, H., Boundary Layer Theory, 7th ed., McGraw-
Hill, New York, 1979.

Conservation Equations and Solutions

6S.1 Consider the control volume shown for the special case
of steady-state conditions with v � 0, T � T(y), and �
� const.

(a) Prove that u � u(y) if v � 0 everywhere.

(b) Derive the x-momentum equation and simplify it as
much as possible.

(c) Derive the energy equation and simplify it as much
as possible.

6S.2 Consider a lightly loaded journal bearing using oil hav-
ing the constant properties � � 10�2 kg/s � m and k �
0.15 W/m � K. If the journal and the bearing are each
maintained at a temperature of 40°C, what is the maxi-
mum temperature in the oil when the journal is rotating
at 10 m/s?

6S.3 Consider a lightly loaded journal bearing using oil hav-
ing the constant properties � � 800 kg/m3, � � 10�5 m2/s,
and k � 0.13 W/m � K. The journal diameter is 75 mm;
the clearance is 0.25 mm; and the bearing operates at
3600 rpm.

(a) Determine the temperature distribution in the oil
film assuming that there is no heat transfer into the
journal and that the bearing surface is maintained
at 75°C.

p

τx, u

y, v

τ + τ dy

p + dx
dx

dy ]p
]x

]
]y

(b) What is the rate of heat transfer from the bearing,
and how much power is needed to rotate the
journal?

6S.4 Consider two large (infinite) parallel plates, 5 mm
apart. One plate is stationary, while the other plate is
moving at a speed of 200 m/s. Both plates are main-
tained at 27°C. Consider two cases, one for which the
plates are separated by water and the other for which
the plates are separated by air.

(a) For each of the two fluids, what is the force per
unit surface area required to maintain the above
condition? What is the corresponding power
requirement?

(b) What is the viscous dissipation associated with
each of the two fluids?

(c) What is the maximum temperature in each of the
two fluids?

6S.5 A judgment concerning the influence of viscous dissipa-
tion in forced convection heat transfer may be made by
calculating the quantity Pr � Ec, where the Prandtl num-
ber Pr � cp�/k and the Eckert number Ec � U2/cp �T are
dimensionless groups. The characteristic velocity and
temperature difference of the problem are designated as
U and �T, respectively. If Pr � Ec � 1, dissipation effects
may be neglected. Consider Couette flow for which one
plate moves at 10 m/s and a temperature difference of
25°C is maintained between the plates. Evaluating prop-
erties at 27°C, determine the value of Pr � Ec for air,
water, and engine oil. What is the value of Pr � Ec for air
if the plate is moving at the sonic velocity?

2. Bird, R. B., W. E. Stewart, and E. N. Lightfoot, Transport
Phenomena, Wiley, New York, 1966.
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W-34 6S.1 � Derivation of the Convection Transfer Equations

(a) Determine the viscous dissipation, �� (W/m3), in
the lubricant.

(b) Determine the rate of heat transfer (W) from the
lubricant, assuming that no heat is lost through the
shaft.

(c) If the bearing housing is water-cooled, such that
the outer surface of the bearing is maintained at
30°C, determine the temperatures of the bearing
and shaft, Tb and Ts.

6S.9 Consider Couette flow with heat transfer as described in
Example 6S.1.

(a) Rearrange the temperature distribution to obtain
the dimensionless form

where � � [T(y) � T0]/[TL � T0] and 	 � y/L. The
dimensionless groups are the Prandtl number Pr �
�cp/k and the Eckert number Ec � U2/cp(TL � T0).

(b) Derive an expression that prescribes the conditions
under which there will be no heat transfer to the
upper plate.

(c) Derive an expression for the heat transfer rate to the
lower plate for the conditions identified in part (b).

(d) Generate a plot of � versus 	 for 0 � 	 � 1 and
values of Pr Ec � 0, 1, 2, 4, 10. Explain key fea-
tures of the temperature distributions.

6S.10 Consider the problem of steady, incompressible lami-
nar flow between two stationary, infinite parallel plates
maintained at different temperatures.

Referred to as Poiseuille flow with heat transfer, this
special case of parallel flow is one for which the x
velocity component is finite, but the y and z compo-
nents (v and w) are zero.
(a) What is the form of the continuity equation for

this case? In what way is the flow fully developed?
(b) What forms do the x- and y-momentum equations

take? What is the form of the velocity profile?
Note that, unlike Couette flow, fluid motion
between the plates is now sustained by a finite
pressure gradient. How is this pressure gradient
related to the maximum fluid velocity?

Infinite
parallel
plates

0

L

T1

T2

dp
  < 0__

dx

y, v

x, u

�(	) � 	[1 � 

1
2Pr Ec(1 � 	)]

6S.6 Consider Couette flow for which the moving plate is
maintained at a uniform temperature and the stationary
plate is insulated. Determine the temperature of the
insulated plate, expressing your result in terms of fluid
properties and the temperature and speed of the moving
plate. Obtain an expression for the heat flux at the mov-
ing plate.

6S.7 Consider Couette flow with heat transfer for which the
lower plate (mp) moves with a speed of U � 5 m/s and is
perfectly insulated. The upper plate (sp) is stationary
and is made of a material with thermal conductivity ksp �
1.5 W/m � K and thickness Lsp � 3 mm. Its outer surface
is maintained at Tsp � 40°C. The plates are separated by
a distance Lo � 5 mm, which is filled with an engine oil
of viscosity � � 0.799 N � s/m2 and thermal conductivity
ko � 0.145 W/m � K.

(a) On T(y)–y coordinates, sketch the temperature dis-
tribution in the oil film and the moving plate.

(b) Obtain an expression for the temperature at the lower
surface of the oil film, T(0) � To, in terms of the plate
speed U, the stationary plate parameters (Tsp, ksp, Lsp)
and the oil parameters (�, ko, Lo). Calculate this tem-
perature for the prescribed conditions.

6S.8 A shaft with a diameter of 100 mm rotates at 9000 rpm in
a journal bearing that is 70 mm long. A uniform lubricant
gap of 1 mm separates the shaft and the bearing. The
lubricant properties are � � 0.03 N � s/m2 and k � 0.15
W/m � K, while the bearing material has a thermal con-
ductivity of kb � 45 W/m � K.

Bearing, kb

Bearing, kb

Shaft
100 mm
diameter

Shaft

200 
mm

Water-cooled surface,
Twc = 30°C

Lubricant

y(mm)

1

0 Ts

Tb

x

Lubricant

y

Lo

0

Lsp Stationary plate, ksp 
Tsp 

U

Moving plate, insulated

Oil (o)
ko,   µ
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� Problems W-35

(c) Assuming viscous dissipation to be significant and
recognizing that conditions must be thermally
fully developed, what is the appropriate form of
the energy equation? Solve this equation for the
temperature distribution. What is the heat flux at
the upper (y � L) surface?

Species Conservation Equation and Solution

6S.11 Consider Problem 6S.10, when the fluid is a binary
mixture with different molar concentrations CA, 1 and
CA, 2 at the top and bottom surfaces, respectively. For
the region between the plates, what is the appropriate
form of the species A continuity equation? Obtain
expressions for the species concentration distribution
and the species flux at the upper surface.

6S.12 A simple scheme for desalination involves maintain-
ing a thin film of saltwater on the lower surface of two
large (infinite) parallel plates that are slightly inclined
and separated by a distance L.

A slow, incompressible, laminar airflow exists
between the plates, such that the x velocity component
is finite while the y and z components are zero. Evapo-
ration occurs from the liquid film on the lower surface,
which is maintained at an elevated temperature T0,
while condensation occurs at the upper surface, which
is maintained at a reduced temperature TL. The corre-
sponding molar concentrations of water vapor at
the lower and upper surfaces are designated as CA,0

and CA,L, respectively. The species concentration and
temperature may be assumed to be independent of x
and z.
(a) Obtain an expression for the distribution of the

water vapor molar concentration CA(y) in the air.
What is the mass rate of pure water production per
unit surface area? Express your results in terms of
CA,0, CA,L, L, and the vapor–air diffusion coeffi-
cient DAB.

(b) Obtain an expression for the rate at which heat must
be supplied per unit area to maintain the lower sur-
face at T0. Express your result in terms of CA,0, CA,L,
T0, TL, L, DAB, hƒg (the latent heat of vaporization of
water), and the thermal conductivity k.

Thin film
of salt water

Condensate

TL

T0

Air flow

y

x

6S.13 Consider the conservation equations (6S.24) and
(6S.31).
(a) Describe the physical significance of each term.
(b) Identify the approximations and special conditions

needed to reduce these expressions to the bound-
ary layer equations (6.29 and 6.30). Comparing
these equations, identify the conditions under
which they have the same form. Comment on the
existence of a heat and mass transfer analogy.

6S.14 The falling film is widely used in chemical processing
for the removal of gaseous species. It involves the
flow of a liquid along a surface that may be inclined at
some angle 
 	 0.

The flow is sustained by gravity, and the gas species A
outside the film is absorbed at the liquid–gas interface.
The film is in fully developed laminar flow over the
entire plate, such that its velocity components in the y
and z directions are zero. The mass density of A at y �
0 in the liquid is a constant �A, o independent of x.
(a) Write the appropriate form of the x-momentum

equation for the film. Solve this equation for the
distribution of the x velocity component, u(y), in
the film. Express your result in terms of �, g, 
,
and the liquid properties � and �. Write an expres-
sion for the maximum velocity umax.

(b) Obtain an appropriate form of the A species con-
servation equation for conditions within the film. If
it is further assumed that the transport of species A
across the gas–liquid interface does not penetrate
very far into the film, the position y � � may, for
all practical purposes, be viewed as y � 
. This
condition implies that to a good approximation, 
u � umax in the region of penetration. Subject to these
assumptions, determine an expression for �A(x, y)
that applies in the film. Hint: This problem is anal-
ogous to conduction in a semi-infinite medium
with a sudden change in surface temperature.

x = L

y

φ

x

Gas (A)

A, oρ

Liquid film
 (B)

δ
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W-36 6S.1 � Derivation of the Convection Transfer Equations

(c) If a local mass transfer convection coefficient is
defined as

where n�A,x is the local mass flux at the gas–liquid
interface, develop a suitable correlation for Shx as
a function of Rex and Sc.

(d) Develop an expression for the total gas absorption
rate per unit width for a film of length L (kg/s � m).

hm, x � 

n�A, x

�A, o

(e) A water film that is 1 mm thick runs down the
inside surface of a vertical tube that is 2 m long and
has an inside diameter of 50 mm. An airstream con-
taining ammonia (NH3) moves through the tube,
such that the mass density of NH3 at the gas–liquid
interface (but in the liquid) is 25 kg/m3. A dilute
solution of ammonia in water is formed, and the
diffusion coefficient is 2 � 10�9 m2/s. What is the
mass rate of NH3 removal by absorption?
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